C++ Algorithm to Remove Outermost Parentheses

  • 时间:2020-10-05 13:15:44
  • 分类:网络文摘
  • 阅读:108 次

A valid parentheses string is either empty (“”), “(” + A + “)”, or A + B, where A and B are valid parentheses strings, and + represents string concatenation. For example, “”, “()”, “(())()”, and “(()(()))” are all valid parentheses strings. A valid parentheses string S is primitive if it is nonempty, and there does not exist a way to split it into S = A+B, with A and B nonempty valid parentheses strings. Given a valid parentheses string S, consider its primitive decomposition: S = P_1 + P_2 + … + P_k, where P_i are primitive valid parentheses strings. Return S after removing the outermost parentheses of every primitive string in the primitive decomposition of S.

Example 1:
Input: “(()())(())”
Output: “()()()”
Explanation:
The input string is “(()())(())”, with primitive decomposition “(()())” + “(())”.
After removing outer parentheses of each part, this is “()()” + “()” = “()()()”.

Example 2:
Input: “(()())(())(()(()))”
Output: “()()()()(())”
Explanation:
The input string is “(()())(())(()(()))”, with primitive decomposition “(()())” + “(())” + “(()(()))”.
After removing outer parentheses of each part, this is “()()” + “()” + “()(())” = “()()()()(())”.

Example 3:
Input: “()()”
Output: “”
Explanation:
The input string is “()()”, with primitive decomposition “()” + “()”.
After removing outer parentheses of each part, this is “” + “” = “”.

Note:

  • S.length <= 10000
  • S[i] is “(” or “)”
  • S is a valid parentheses string

Tracking the Depth of the Parenthesses

Given the lengthy description, however, the solution is very intuitive/straightforward, i.e. keeping tracks of the depths and ignoring the first level.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    string removeOuterParentheses(string S) {
        string r = "", cur = "";
        int depth = 0;
        for (int i = 0; i < S.size(); ++ i) {
            if (S[i] == '(') {
                depth ++;
                if (depth > 1) {
                    cur += "(";
                }
            } else {
                depth --;
                if (depth == 0) {
                    r += cur;
                    cur = "";
                } else {
                    cur += ")";
                }
            }
        } 
        return r;
    }
};
class Solution {
public:
    string removeOuterParentheses(string S) {
        string r = "", cur = "";
        int depth = 0;
        for (int i = 0; i < S.size(); ++ i) {
            if (S[i] == '(') {
                depth ++;
                if (depth > 1) {
                    cur += "(";
                }
            } else {
                depth --;
                if (depth == 0) {
                    r += cur;
                    cur = "";
                } else {
                    cur += ")";
                }
            }
        } 
        return r;
    }
};

When we meet a left parenthess, we increment the depth, otherwise we decrement the depth i.e. for right parenthess. When the depth is zero for ‘)’, we need to concatenate the inner parenthesses and reset the parenthesses string. The space complexity is O(1) constant and the time complexity for above C++ implementation is O(N) where N is the length of the given input, i.e. a valid parenthesses string.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
Creating a Social Media Contest Strategy to Boost Engagement  A Productivity & Health Guide for Home-Based Entrepreneurs  Recursive Depth First Search Algorithm to Delete Leaves With a G  Algorithms to Determine a Palindrome Number  Algorithm to Compute the Fraction to Recurring Decimal of the Tw  Algorithms to Check if Array Contains Duplicate Elements  Recursive Depth First Search Algorithm to Compute the Sum of Nod  How to Convert Integer to the Sum of Two No-Zero Integers?  Algorithm to Generate the Spiral Matrix in Clock-wise Order  How to Remove the Duplicates from Sorted List (Leaving Only Dist 
评论列表
添加评论