Minimum Numbers of Function Calls to Make Target Array
- 时间:2020-09-07 12:13:31
- 分类:网络文摘
- 阅读:100 次
Consider the following function to make changes to an array of numbers:
1 2 3 4 5 6 7 8 9 10 11 | func modify(arr, op, idx) { // add by 1 index idx if (op == 0) { arr[idx] ++; } else if (op == 1) { // multiply by 2 to all elements for (i = 0; i < arr.length; i ++) { arr[i] *= 2; } } } |
func modify(arr, op, idx) {
// add by 1 index idx
if (op == 0) {
arr[idx] ++;
} else if (op == 1) {
// multiply by 2 to all elements
for (i = 0; i < arr.length; i ++) {
arr[i] *= 2;
}
}
}Your task is to form an integer array nums from an initial array of zeros arr that is the same size as nums. Return the minimum number of function calls to make nums from arr. The answer is guaranteed to fit in a 32-bit signed integer.
Example 1:
Input: nums = [1,5]
Output: 5
Explanation: Increment by 1 (second element): [0, 0] to get [0, 1] (1 operation).
Double all the elements: [0, 1] -> [0, 2] -> [0, 4] (2 operations).
Increment by 1 (both elements) [0, 4] -> [1, 4] -> [1, 5] (2 operations).
Total of operations: 1 + 2 + 2 = 5.Example 2:
Input: nums = [2,2]
Output: 3
Explanation: Increment by 1 (both elements) [0, 0] -> [0, 1] -> [1, 1] (2 operations).
Double all the elements: [1, 1] -> [2, 2] (1 operation).
Total of operations: 2 + 1 = 3.Example 3:
Input: nums = [4,2,5]
Output: 6
Explanation: (initial)[0,0,0] -> [1,0,0] -> [1,0,1] -> [2,0,2] -> [2,1,2] -> [4,2,4] -> [4,2,5](nums).Example 4:
Input: nums = [3,2,2,4]
Output: 7Example 5:
Input: nums = [2,4,8,16]
Output: 8Constraints:
1 <= nums.length <= 10^5
0 <= nums[i] <= 10^9Hints:
Work backwards: try to go from nums to arr.
You should try to divide by 2 as much as possible, but you can only divide by 2 if everything is even.
Math Algorithm to Compute the Minimum Numbers of Function Calls to Make Target Array
Let’s consider the change backwards. If a number is odd, we can only decrement by one. Otherwise, for even numbers, we only need to divide them the maximum number of times.
The final answer is the operation required for both Multiplication and Addition. The complexity is O(NLogM) where N is the number of the elements in the array and the M is the average for those numebrs. The following is the Python Implementation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | class Solution: def minOperations(self, nums: List[int]) -> int: add = 0 mul = 0 for n in nums: m = 0 while n > 0: if (n & 1) == 1: add += 1 n -= 1 else: m += 1 mul = max(m, mul) n //= 2 return add + mul |
class Solution:
def minOperations(self, nums: List[int]) -> int:
add = 0
mul = 0
for n in nums:
m = 0
while n > 0:
if (n & 1) == 1:
add += 1
n -= 1
else:
m += 1
mul = max(m, mul)
n //= 2
return add + mulAnd the C++ implementation is as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class Solution { public: int minOperations(vector<int> nums) { int add = 0, mul = 0; for (auto &n: nums) { int m = 0; while (n) { if ((n & 1) == 1) { ++ add; -- n; } else { ++ m; n >>= 1; } } mul = max(mul, m); } return add + mul; } }; |
class Solution {
public:
int minOperations(vector<int> nums) {
int add = 0, mul = 0;
for (auto &n: nums) {
int m = 0;
while (n) {
if ((n & 1) == 1) {
++ add;
-- n;
} else {
++ m;
n >>= 1;
}
}
mul = max(mul, m);
}
return add + mul;
}
};–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:北京体育频道直播-北京体育在线直播观看「高清」 五星体育直播-五星体育在线直播观看「高清」 风云足球直播-风云足球在线直播观看「高清」 吉林篮球直播-吉林篮球在线直播观看「高清」 江苏体育直播-江苏体育在线直播观看「高清」 广州竞赛直播-广州竞赛频道在线直播观看「高清」 广东体育频道直播-广东体育频道在线直播观看「高清」 高尔夫网球频道直播-CCTV高尔夫网球在线直播「高清」 央视台球频道直播-斯诺克直播「高清」 山东体育频道直播-山东体育在线直播观看「高清」
- 评论列表
-
- 添加评论