Using Bitmasking Algorithm to Compute the Combinations of an Arr

  • 时间:2020-09-07 12:13:31
  • 分类:网络文摘
  • 阅读:108 次

Given two integers n and k, return all possible combinations of k numbers out of 1 … n.

Example:

Input: n = 4, k = 2
Output:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

Combination Algorithm using Bitmasking

The combination can also be done in Recursive backtracking. However, it can also be implemented using the Bitmasking algorithm.

The idea is to bruteforce all possible configurations (of bitmasks) in O(2^N) where N is the length of the given input set. Then once the configuration has k bit sets, we output the corresponding configuration.

The following is the Python combination implementation using bitmasking.

1
2
3
4
5
6
7
8
9
10
11
class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        ans = []
        for b in (range(1 << n)):
            if bin(b).count('1') == k:
                cur = []
                for i in range(n):
                    if (b & (1 << i)) > 0:
                        cur.append(i + 1)
                ans.append(cur)
        return ans
class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        ans = []
        for b in (range(1 << n)):
            if bin(b).count('1') == k:
                cur = []
                for i in range(n):
                    if (b & (1 << i)) > 0:
                        cur.append(i + 1)
                ans.append(cur)
        return ans

and with slight changes – reversing the bit searching – still works

1
2
3
4
5
6
7
8
9
10
11
class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        ans = []
        for b in reversed(range(1 << n)):
            if bin(b).count('1') == k:
                cur = []
                for i in range(n):
                    if (b & (1 << (n - i - 1))) > 0:
                        cur.append(i + 1)
                ans.append(cur)
        return ans
class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        ans = []
        for b in reversed(range(1 << n)):
            if bin(b).count('1') == k:
                cur = []
                for i in range(n):
                    if (b & (1 << (n - i - 1))) > 0:
                        cur.append(i + 1)
                ans.append(cur)
        return ans

The recursive algorithm in C++: Recursive Combination Algorithm Implementation in C++.

Also, another interesting read: combination

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
数学题:前三轮的平均的平均分是94  数学题:财务室会计结账时,发现账面上少了890.1元钱  数学题:一个玻璃瓶内原有盐是水的1/11  数学题:把圆柱平均分成若干份后拼成一个长方体  奥数题:甲乙两地中间有一座山岭  奥数题:一份工作按计划的时间算  简便计算题:1997÷(1997+1997/1998)+(1/1999)  数学题:在比例尺1:5000的图纸上  2014年是平年还是闰年  数学题:在11次红灯变绿灯之间的黄灯亮起中 
评论列表
添加评论