Counting the Prime Arrangements

  • 时间:2020-09-19 10:45:07
  • 分类:网络文摘
  • 阅读:129 次

Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.) (Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.) Since the answer may be large, return the answer modulo 10^9 + 7.

Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.

Example 2:
Input: n = 100
Output: 682289015

Constraints:
1 <= n <= 100

Hints:
Solve the problem for prime numbers and composite numbers separately.
Multiply the number of permutations of prime numbers over prime indices with the number of permutations of composite numbers over composite indices.
The number of permutations equals the factorial.

Counting Prime Numbers and Composite Numbers

The number of permutations will be equal to the product of the permutation from all prime numbers and the number of composite numbers. And the total permutations for n-numbers can be computed via factorial which is n!

We can use Sieve Prime Algorithms to generate the prime numbers less than 100 (given constraints) quickly – and use a boolean array to indicate if a number is prime or not.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
public:
    int numPrimeArrangements(int n) {
        countPrimes();
        int numOfPrimes = 0;
        for (int i = 1; i <= n; ++ i) {
            if (primes[i]) {
                numOfPrimes ++;
            }
        }
        return ((int64_t)(fact(numOfPrimes) % MOD) * 
                (fact(n - numOfPrimes) % MOD)) % MOD;
    }
private:
    const int MOD = (int)(1e9 + 7);
    static const int MAXN = 101;
    bool primes[MAXN];
    
    void countPrimes() { // using Sieve Prime Algorithms
        std::fill(begin(primes), end(primes), true);
        primes[0] = false;
        primes[1] = false;        
        int i = 2;
        while (i < MAXN) {            
            int j = i;
            while (j + i < MAXN) {
                j += i;
                primes[j] = false;
            }
            i ++;
            while ((i < MAXN) && (!primes[i])) i ++;            
        }
    }
    
    int fact(int n) {
        int64_t r = 1;
        for (int i = 2; i <= n; ++ i) {
            r = ((r % MOD) * (i % MOD)) % MOD;
        }
        return (int)r;
    }
};
class Solution {
public:
    int numPrimeArrangements(int n) {
        countPrimes();
        int numOfPrimes = 0;
        for (int i = 1; i <= n; ++ i) {
            if (primes[i]) {
                numOfPrimes ++;
            }
        }
        return ((int64_t)(fact(numOfPrimes) % MOD) * 
                (fact(n - numOfPrimes) % MOD)) % MOD;
    }
private:
    const int MOD = (int)(1e9 + 7);
    static const int MAXN = 101;
    bool primes[MAXN];
    
    void countPrimes() { // using Sieve Prime Algorithms
        std::fill(begin(primes), end(primes), true);
        primes[0] = false;
        primes[1] = false;        
        int i = 2;
        while (i < MAXN) {            
            int j = i;
            while (j + i < MAXN) {
                j += i;
                primes[j] = false;
            }
            i ++;
            while ((i < MAXN) && (!primes[i])) i ++;            
        }
    }
    
    int fact(int n) {
        int64_t r = 1;
        for (int i = 2; i <= n; ++ i) {
            r = ((r % MOD) * (i % MOD)) % MOD;
        }
        return (int)r;
    }
};

Alternatively, we can test each number on the fly – O(Sqrt(N)) complexity – but O(1) particularly in this problem given the constraint of maximum input is 100.

1
2
3
4
5
6
7
8
9
bool checkPrime(int n) { // O(Sqrt(N))
    if (n <= 1) return false;
    if (n <= 3) return true;
    if (n % 2 == 0) return false;
    for (int i = 3; i * i <= n; i += 2) {
        if (n % i == 0) return false;
    }
    return true;
}
bool checkPrime(int n) { // O(Sqrt(N))
    if (n <= 1) return false;
    if (n <= 3) return true;
    if (n % 2 == 0) return false;
    for (int i = 3; i * i <= n; i += 2) {
        if (n % i == 0) return false;
    }
    return true;
}

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
乙将比丙领先多少米?  求两袋糖的重量之和  两家相距有多远?  熊掌号:博客优化的SEO技巧有哪些?  超级排名系统介绍 快速提升百度搜狗360神马手机网站排名  超级排名系统:常见的搜索引擎指令有哪些?  网站是靠什么途径赚钱的?怎么让你的网站赚钱?  个人站长如何赚钱?淘宝客还是卖广告位  一道往返问题  速算小诀窍 
评论列表
添加评论