How to Compute Running Sum of 1d Array using std::partial_sum in

  • 时间:2020-09-08 11:19:41
  • 分类:网络文摘
  • 阅读:132 次

Given an array nums. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i]). Return the running sum of nums.

Example 1:
Input: nums = [1,2,3,4]
Output: [1,3,6,10]
Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].

Example 2:
Input: nums = [1,1,1,1,1]
Output: [1,2,3,4,5]
Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].

Example 3:
Input: nums = [3,1,2,10,1]
Output: [3,4,6,16,17]

Constraints:
1 <= nums.length <= 1000
-10^6 <= nums[i] <= 10^6

Hints:
Think about how we can calculate the i-th number in the running sum from the (i-1)-th number.

Accumulate Prefix Sum

A traditional approach to compute the running sum would be to accumulate the prefix sum. You can use an additional variable to keep the sum, or simply we can update in place (use previous element in the array) to store the prefix sum.

1
2
3
4
5
6
7
8
9
class Solution {
public:
    vector<int> runningSum(vector<int>& nums) {
        for (int i = 1; i < nums.size(); ++ i) {
            nums[i] += nums[i - 1];
        }
        return nums;
    }
};
class Solution {
public:
    vector<int> runningSum(vector<int>& nums) {
        for (int i = 1; i < nums.size(); ++ i) {
            nums[i] += nums[i - 1];
        }
        return nums;
    }
};

C++ std::partial_sum

The C++ std::partial_sum does exactly this job. The function computes the partial sums of the elements in the range specified by [first, last) and update them to the range begining at third parameter.

1
2
3
4
5
6
7
class Solution {
public:
    vector<int> runningSum(vector<int>& nums) {
        partial_sum(begin(nums), end(nums), begin(nums));
        return nums;
    }
};
class Solution {
public:
    vector<int> runningSum(vector<int>& nums) {
        partial_sum(begin(nums), end(nums), begin(nums));
        return nums;
    }
};

The std::partial_sum may be implemented as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
template<class InputIt, class OutputIt>
constexpr // since C++20
OutputIt partial_sum(InputIt first, InputIt last, 
                     OutputIt d_first)
{
    if (first == last) return d_first;
 
    typename std::iterator_traits<inputit>::value_type sum = *first;
    *d_first = sum;
 
    while (++first != last) {
       sum = std::move(sum) + *first; // std::move since C++20
       *++d_first = sum;
    }
    return ++d_first;
 
    // or, since C++14:
    // return std::partial_sum(first, last, d_first, std::plus<>());
}
template<class InputIt, class OutputIt>
constexpr // since C++20
OutputIt partial_sum(InputIt first, InputIt last, 
                     OutputIt d_first)
{
    if (first == last) return d_first;
 
    typename std::iterator_traits<inputit>::value_type sum = *first;
    *d_first = sum;
 
    while (++first != last) {
       sum = std::move(sum) + *first; // std::move since C++20
       *++d_first = sum;
    }
    return ++d_first;
 
    // or, since C++14:
    // return std::partial_sum(first, last, d_first, std::plus<>());
}

The loops can be unrolled as the following:

1
2
3
4
5
*(d_first)   = *first;
*(d_first+1) = *first + *(first+1);
*(d_first+2) = *first + *(first+1) + *(first+2);
*(d_first+3) = *first + *(first+1) + *(first+2) + *(first+3);
...
*(d_first)   = *first;
*(d_first+1) = *first + *(first+1);
*(d_first+2) = *first + *(first+1) + *(first+2);
*(d_first+3) = *first + *(first+1) + *(first+2) + *(first+3);
...

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
YouTube’s New “Viewer Applause” Feature Provides Revenue for Blo  Taiwanese Instagram Grandparents Prove Blogging and Social Media  These Incredible Hologram Machines Could Change the Vlogging Gam  Prepare All Keyboard Warriors: A TikTok and Twitter Merger is Ab  Content Creation Platforms That Pay in Crypto  How to be like Elon Musk: An Influencer CEO  Your Simple Guide to Ultimate Technology Stack Every Blogger Nee  Recursive Algorithm to Encrypte a String  Reconnect the Nodes in Linked List by Odd/Even in Place (Odd Eve  Breadth First Search Algorithm to Find Nearest Right Node in Bin 
评论列表
添加评论