How to Turn a Binary Search Tree into a Increasing Order Search
- 时间:2020-10-12 15:39:01
- 分类:网络文摘
- 阅读:97 次
Given a tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only 1 right child.
Example 1:
Input: [5,3,6,2,4,null,8,1,null,null,null,7,9]5 / \ 3 6 / \ \ 2 4 8 / / \ 1 7 9Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9
The task is to convert a Binary Search Tree into a Inceasing Order Search Tree – which is a sorted linked list – where the Tree has only right nodes.
DFS/Recursion – Inorder
An in-order traversal of a Binary Search Tree yield a sorted list. We can recursively travel the binary tree using DFS (Depth First Search), visit the left nodes first, then parent node, and the right nodes – which is the in-order traversal.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* increasingBST(TreeNode* root) { vector<int> nodes; dfs(root, nodes); // store the in-order nodes TreeNode *ans = new TreeNode(-1); // dummy root node TreeNode *p = ans; for (const auto &n: nodes) { p->right = new TreeNode(n); p = p->right; } return ans->right; } void dfs(TreeNode* root, vector<int> &nodes) { if (root == NULL) return; dfs(root->left, nodes); nodes.push_back(root->val); dfs(root->right, nodes); } }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* increasingBST(TreeNode* root) {
vector<int> nodes;
dfs(root, nodes); // store the in-order nodes
TreeNode *ans = new TreeNode(-1); // dummy root node
TreeNode *p = ans;
for (const auto &n: nodes) {
p->right = new TreeNode(n);
p = p->right;
}
return ans->right;
}
void dfs(TreeNode* root, vector<int> &nodes) {
if (root == NULL) return;
dfs(root->left, nodes);
nodes.push_back(root->val);
dfs(root->right, nodes);
}
};As we visit the nodes, we put them in order into a separate list – which is to convert to the linked-list later.
Binary Search Tree Inorder Traversal using Iterative Depth First Search Algorithms
We can replace the recursion with manual stacks. We push the left nodes to the stack at priority, and navigate to the right nodes then.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* increasingBST(TreeNode* root) { if (root == NULL) return NULL; vector<int> nodes; stack<TreeNode*> st; TreeNode *p = root; while (st.size() > 0 || p) { while (p) { st.push(p); p = p->left; } p = st.top(); st.pop(); nodes.push_back(p->val); p = p->right; } TreeNode *ans = new TreeNode(-1); p = ans; for (const auto &n: nodes) { p->right = new TreeNode(n); p = p->right; } return ans->right; } }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* increasingBST(TreeNode* root) {
if (root == NULL) return NULL;
vector<int> nodes;
stack<TreeNode*> st;
TreeNode *p = root;
while (st.size() > 0 || p) {
while (p) {
st.push(p);
p = p->left;
}
p = st.top();
st.pop();
nodes.push_back(p->val);
p = p->right;
}
TreeNode *ans = new TreeNode(-1);
p = ans;
for (const auto &n: nodes) {
p->right = new TreeNode(n);
p = p->right;
}
return ans->right;
}
};Both methods run at O(N) time complexity and O(N) space complexity – and clearly the recursion results in a cleaner/concise code.
Rewrite the Node Links
As we walk through the nodes, we can just rewrite the pointers without a second run to convert the sorted list into a Increasing Search Order Tree.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* increasingBST(TreeNode* root) { if (root == NULL) return NULL; stack<TreeNode*> st; TreeNode *p = root; TreeNode *ans = new TreeNode(-1); TreeNode *pre = ans; while (st.size() > 0 || p) { while (p) { st.push(p); p = p->left; } p = st.top(); st.pop(); p->left = NULL; pre->right = p; pre = p; p = p->right; } return ans->right; } }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* increasingBST(TreeNode* root) {
if (root == NULL) return NULL;
stack<TreeNode*> st;
TreeNode *p = root;
TreeNode *ans = new TreeNode(-1);
TreeNode *pre = ans;
while (st.size() > 0 || p) {
while (p) {
st.push(p);
p = p->left;
}
p = st.top();
st.pop();
p->left = NULL;
pre->right = p;
pre = p;
p = p->right;
}
return ans->right;
}
};This approach still runs at O(N) time and space complexity – as it still requires a stack.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:一个直角三角形里画一个最大的正方形 非凡的天才——伽罗华 承受磨炼——伽罗华 难以遮掩的光芒——伽罗华 小猪丢丑——小花猪1 回归自然——小花猪2 小黑野猪——小花猪3 人猪大战——小花猪4 网站建设容易忽略的6个地方 如何检查网站是否被竞争对手Negative SEO攻击?
- 评论列表
-
- 添加评论