Dynamic Algorithm to Compute the Longest Common Subsequence
- 时间:2020-10-11 15:25:20
- 分类:网络文摘
- 阅读:116 次
Given two strings text1 and text2, return the length of their longest common subsequence.
A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, “ace” is a subsequence of “abcde” while “aec” is not). A common subsequence of two strings is a subsequence that is common to both strings.
If there is no common subsequence, return 0.
Example 1:
Input: text1 = “abcde”, text2 = “ace”
Output: 3
Explanation: The longest common subsequence is “ace” and its length is 3.Example 2:
Input: text1 = “abc”, text2 = “abc”
Output: 3
Explanation: The longest common subsequence is “abc” and its length is 3.Example 3:
Input: text1 = “abc”, text2 = “def”
Output: 0
Explanation: There is no such common subsequence, so the result is 0.Constraints:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
The input strings consist of lowercase English characters only.Hints:
Try dynamic programming. DP[i][j] represents the longest common subsequence of text1[0 … i] & text2[0 … j].
DP[i][j] = DP[i – 1][j – 1] + 1 , if text1[i] == text2[j] DP[i][j] = max(DP[i – 1][j], DP[i][j – 1]) , otherwise
Longest Common Subsequence using Dynamic Programming Algorithm
Sure, we can bruteforce, try to find all the common subsequence from both strings, and compare if they match. But the complexity is so high that it won’t be practical.
One better solution is to use the dynamic programming algorithm where we use a two dimensional array dp[i][j] to store the maximum length of the common subsequence from s1[0..i] and s2[0..j].
Then, a O(N^2) qudaric loop is needed, if we have s1[i] == s2[j], we update the answer to dp[i-1][j-1], otherwise, it is the maximum of dp[i-1][j] and dp[i][j-1].
The DP formula is:
if 
if 
By implementing the above equations, we have the following C++ code.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | class Solution { public: int longestCommonSubsequence(string text1, string text2) { int len1 = text1.size(); int len2 = text2.size(); vector<vector<int>> dp(len1, vector<int>(len2, 0)); dp[0][0] = text1[0] == text2[0] ? 1 : 0; for (int i = 0; i < len1; ++ i) { for (int j = 0; j < len2; ++ j) { if (text1[i] == text2[j]) { if ((i > 0) && (j > 0)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = 1; } } else { if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]); if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]); } } } return dp.back().back(); } }; |
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int len1 = text1.size();
int len2 = text2.size();
vector<vector<int>> dp(len1, vector<int>(len2, 0));
dp[0][0] = text1[0] == text2[0] ? 1 : 0;
for (int i = 0; i < len1; ++ i) {
for (int j = 0; j < len2; ++ j) {
if (text1[i] == text2[j]) {
if ((i > 0) && (j > 0)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = 1;
}
} else {
if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
}
}
}
return dp.back().back();
}
};If we slightly increase the DP array by one, and update dp[i+1][j+1], we have a cleaner code.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | class Solution { public: int longestCommonSubsequence(string text1, string text2) { int n1 = text1.size(), n2 = text2.size(); vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1)); for (int i = 0; i < n1; ++ i) { for (int j = 0; j < n2; ++ j) { if (text1[i] == text2[j]) { dp[i + 1][j + 1] = dp[i][j] + 1; } else { dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]); } } } return dp[n1][n2]; } }; |
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int n1 = text1.size(), n2 = text2.size();
vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1));
for (int i = 0; i < n1; ++ i) {
for (int j = 0; j < n2; ++ j) {
if (text1[i] == text2[j]) {
dp[i + 1][j + 1] = dp[i][j] + 1;
} else {
dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
}
}
}
return dp[n1][n2];
}
};Both implementations are having O(N^2) time and space complexity.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:What to Expect from Hiring Outsourced Content Writers Call for Minimalism: How the New Wave of Blogging Platforms Give 3 Easy Ways to Improve Writing Skills Explaining The Perfect Website Design to Non-Designers Clear Skies Ahead – The Shift to Cloud Computing Content Creation Versus Content Sharing How Bloggers Can Help During Times of Tragedy 5 Best Online Interviews About Blogging You Haven’t Read Yet 5 Ways To Transform Your Blogger Outreach Don’t Feed The Trolls: How to Stop Haters from Infiltrating Your
- 评论列表
-
- 添加评论