Classic Unlimited Knapsack Problem Variant: Coin Change via Dyna

  • 时间:2020-09-23 15:50:46
  • 分类:网络文摘
  • 阅读:119 次

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

Example 1:
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.

Example 3:
Input: amount = 10, coins = [10]
Output: 1

Note:
You can assume that

  • 0 <= amount <= 5000
  • 1 <= coin <= 5000
  • the number of coins is less than 500
  • the answer is guaranteed to fit into signed 32-bit integer

This is one variant of the classic knapsack problem where you can use unlimited items of a kind. The target is to find the total number of combinations. Another similar problem is to find the shortest combination: Classic Knapsack Problem Variant: Coin Change via Dynamic Programming and Breadth First Search Algorithm

Unlimite Knapsack Problem via Depth First Search Algorithm to Find All Combination

The most intuitive method is to use the Depth First Search algorithm that makes a choice (choose a coin) and move on to the next by subtracting the coin value from the amount, thus, we have a smaller problem.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        dfs(amount, coins, 0);
        return ans;
    }
private:
    int ans = 0;
    void dfs(int amount, vector<int>& coins, int idx) {
        if (amount == 0) {
            ans ++;
            return;
        }        
        for (int i = idx; i < coins.size(); ++ i) {
            if (amount >= coins[i]) {
                // choose coins[i] and solve a smaller problem recursively
                dfs(amount - coins[i], coins, i);
            }
        }
    }
};
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        dfs(amount, coins, 0);
        return ans;
    }
private:
    int ans = 0;
    void dfs(int amount, vector<int>& coins, int idx) {
        if (amount == 0) {
            ans ++;
            return;
        }        
        for (int i = idx; i < coins.size(); ++ i) {
            if (amount >= coins[i]) {
                // choose coins[i] and solve a smaller problem recursively
                dfs(amount - coins[i], coins, i);
            }
        }
    }
};

We recursively solve a smaller problem and when the amount is reduced to zero, we can increment the answer. The problem with above C++ DPS recursive implementation is that the intermediate smaller problems are computed again and again, which leads to exponential complexity O(N^N) where N is the number of the coin values.

Solving the Unlimited Knapsack Combination via Dynamic Programming

dynamic-programming-interview-questions Classic Unlimited Knapsack Problem Variant: Coin Change via Dynamic Programming and Depth First Search Algorithm algorithms c / c++ DFS dynamic programming

dynamic-programming-interview-questions

We can use the F(N) to represent the number of combinations for amount N, then following DP equation applies:

1
2
f[0] = 1; // for zero amount, only 1 combination which is 0.
f[n] = sum(F[N-c]); // c - the coin values.
f[0] = 1; // for zero amount, only 1 combination which is 0.
f[n] = sum(F[N-c]); // c - the coin values.

As such, the intermediate results are remembered in the F array, and the complexity is O(NM) where N is the number of different items e.g. coins, and the M is the amount e.g. the total capacity for the knapsack. The below C++ uses O(M) additional space.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> f(amount + 1, 0);
        f[0] = 1;
        for (const auto &c: coins) {
            for (int i = 1; i <= amount; ++ i) {
                if (i >= c) {
                    f[i] += f[i - c];
                }
            }
        }
        return f[amount];
    }
};
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> f(amount + 1, 0);
        f[0] = 1;
        for (const auto &c: coins) {
            for (int i = 1; i <= amount; ++ i) {
                if (i >= c) {
                    f[i] += f[i - c];
                }
            }
        }
        return f[amount];
    }
};

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
“僵尸肉”蹿上餐桌拷问食品安全监管  夏季炒菜时可多放一种调料——花椒  四种热门食物并没有那么神奇的营养功效  “养胃饼干”不养胃 消费者起诉徐静蕾代言  盛夏常饮枸杞菊花茶 保养眼睛功效强  西瓜虽好,但这九类人群不宜吃西瓜  保健酒乱象调查:为见效快违法添加伟哥  饮用蜂蜜水的最佳时间及注意事项  红枣维生素含量高 喝大枣水养肝排毒  黑木耳营养丰富对健康有五大好处 
评论列表
添加评论