Compute the Number of Ways to Paint the House via Dynamic Progra

  • 时间:2020-09-23 15:50:46
  • 分类:网络文摘
  • 阅读:98 次

There is a fence with n posts, each post can be painted with one of the k colors.

You have to paint all the posts such that no more than two adjacent fence posts have the same color.

Return the total number of ways you can paint the fence.

Note:
n and k are non-negative integers.

Example:
Input: n = 3, k = 2
Output: 6
Explanation: Take c1 as color 1, c2 as color 2. All possible ways are:

            post1  post2  post3      
 -----      -----  -----  -----       
   1         c1     c1     c2 
   2         c1     c2     c1 
   3         c1     c2     c2 
   4         c2     c1     c1  
   5         c2     c1     c2
   6         c2     c2     c1

Using Dynamic Programming to Paint the House

In last post: How to Paint The Houses using Minimal Costs via Dynamic Programming Algorithm?, we discuss the algorithm to paint the house with the minimal cost.

In this post, we will discuss using the same Dynamic Programming algorithm to compute the number of different ways to paint the house subject to one criteria: no same colours for 3 consecutive houses in a row.

If we use F(n) to denote the answer, we can easily have the following:

1
2
3
4
F[0] = 0;
F[1] = k;
F[2] = k * k;
F[n] = (k - 1) * (F[n - 1] + F[n - 2]);
F[0] = 0;
F[1] = k;
F[2] = k * k;
F[n] = (k - 1) * (F[n - 1] + F[n - 2]);

It is straightforward to define/compute the first few F values. When we paint the house n, we might have two choices: paint a different colour than house n-1, which will be answer F[n-1]*(k-1) choices, or with the same colour as house n-1, which will be answer F[n-2]*(k-1).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
    int numWays(int n, int k) {
        vector<int> f(n + 1);
        f[0] = 0;
        if (n == 0) return f[0];
        f[1] = k;
        if (n == 1) return f[1];
        f[2] = k * k;
        if (n == 2) return f[2];
        for (int i = 3; i <= n; ++ i) {
            f[i] = f[i - 1] * (k - 1) + // different color 
                f[i - 2] * (k - 1); // same color
        }
        return f[n];
    }
};
class Solution {
public:
    int numWays(int n, int k) {
        vector<int> f(n + 1);
        f[0] = 0;
        if (n == 0) return f[0];
        f[1] = k;
        if (n == 1) return f[1];
        f[2] = k * k;
        if (n == 2) return f[2];
        for (int i = 3; i <= n; ++ i) {
            f[i] = f[i - 1] * (k - 1) + // different color 
                f[i - 2] * (k - 1); // same color
        }
        return f[n];
    }
};

This DP is a bit alike (not exactly the same as): Derangement Permutation Implementation using R Programming

The above C++ code implements the DP solution that runs at O(N) both in time and space.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
Breadth-First Search Algorithm to Solve Puzzle (Rotting Oranges)  Facebook Onsite Interview Preparation Part 1: Motivation/Bahavio  Celebrate WordPress’ 13th Birthday With These Interesting Facts  5 Ways to Use Your Smartphone to Build a Better Blog  The Most Expensive Domain Sales Ever  15 Ways Of How Not To Kill Your Leadership Authority  Study Shows Strong Growth of Tech Inventions to Fight Climate Ch  Interested in Bitcoins? Here are 10 Blogs You Need to Check Out  Your Blog’s Been Hacked! Here’s What You Need to Do  #DiningForBrussels: How Belgium Is Fighting Terrorism With A For 
评论列表
添加评论