How to Compute the Surface Area of 3D Shapes (Cubes Placed on Gr

  • 时间:2020-09-18 17:01:02
  • 分类:网络文摘
  • 阅读:129 次

On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j). Return the total surface area of the resulting shapes.

Example 1:
Input: [[2]]
Output: 10

Example 2:
Input: [[1,2],[3,4]]
Output: 34

Example 3:
Input: [[1,0],[0,2]]
Output: 16

Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 32

Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 46

Note:
1 <= N <= 50
0 <= grid[i][j] <= 50

When we place a single cube on the grid, the surface is 6 (4×1+2), when we place a 2×1 cubes on the grid, the surface is 10 – which is 4×2+2. That is, there is only 1 top and 1 bottom, but 4 times of the number cubes that stacked together – as the connected parts (vertically) are hidden.

Then, we can iterate each verticl stacked cubes, add the top and bottom, count the side surfaces by checking the four neighbours, and add the difference.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int dr[4] = {0, 1, 0, -1};
        int dc[4] = {1, 0, -1, 0};
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 2;
                    for (int k = 0; k < 4; ++ k) {
                        int nr = r + dr[k];
                        int nc = c + dc[k];
                        int nv = 0;
                        if ((0 <= nr) && (0 <= nc) && 
                            (nr < N) && (nc < N)) {
                            nv = grid[nr][nc];
                        }
                        ans += max(grid[r][c] - nv, 0);
                    }
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int dr[4] = {0, 1, 0, -1};
        int dc[4] = {1, 0, -1, 0};
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 2;
                    for (int k = 0; k < 4; ++ k) {
                        int nr = r + dr[k];
                        int nc = c + dc[k];
                        int nv = 0;
                        if ((0 <= nr) && (0 <= nc) && 
                            (nr < N) && (nc < N)) {
                            nv = grid[nr][nc];
                        }
                        ans += max(grid[r][c] - nv, 0);
                    }
                }
            }
        }
        return ans;
    }
};

Slightly differently, we can check the neighbours of north and west only and minus those connected surfaces.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 4 * grid[r][c] + 2;
                    if (r > 0) ans -= min(grid[r][c], grid[r - 1][c]) * 2;
                    if (c > 0) ans -= min(grid[r][c], grid[r][c - 1]) * 2;
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    int surfaceArea(vector<vector<int>>& grid) {
        int N = grid.size();
        int ans = 0;
        for (int r = 0; r < N; ++ r) {
            for (int c = 0; c < N; ++ c) {
                if (grid[r][c] > 0) {
                    ans += 4 * grid[r][c] + 2;
                    if (r > 0) ans -= min(grid[r][c], grid[r - 1][c]) * 2;
                    if (c > 0) ans -= min(grid[r][c], grid[r][c - 1]) * 2;
                }
            }
        }
        return ans;
    }
};

Both algorithms/approaches are based on the counting, which result in O(N^2) time and O(1) space requirement.

Similar post: How to Compute the Projection Area of 3D Shapes?

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
春节逛花市作文  在苦难中行走  百度正式上线快速收录功能  如何让百度快速收录网页?快用百度站长平台“快速收录”功能!  php和asp网站源码有什么不同?哪种代码语言更好?  装修公司网销业绩不好?原因和解决方法都在这里  亚马逊正式推出企业搜索引擎Kendra  为什么Google SEO见效慢  一个三流SEOer从业记录  网站权重如何提升,掌握以下几点快速提权 
评论列表
添加评论