The Combination Function and Iterator using Depth First Search A
- 时间:2020-09-13 14:33:25
- 分类:网络文摘
- 阅读:125 次
The combination algorithm returns the sequence for a list or string without considering the order. For example, the Combination of string “abc” with two characters would be “ab”, “ac” and “bc”.
The number of combination for n-size elements using m elements can be computed as:

combination-formula
For example, Picking 2 elements out of 3 has three solutions: 3!/(2!*(3-2)!) = 3
Solving Combination via DFS Algorithm
We can use the DFS (Depth First Search) algorithm to start picking elements until we have picked the desired number of items. For each iteration, we can choose to pick or not pick the current element. The DFS can be easily implemented via Recursion.
In the following C++ function, we define a recursive combination function that will push all the results into a vector (pass by reference). We pass a position variable and we will only pick in current iteration the elements to the right of this position.
1 2 3 4 5 6 7 8 9 10 11 12 | void combination(string alphabeta, int toPick, vector<string> &result, string s = "", int pos = 0) { if (s.size() == toPick) { // found a solution result.push_back(s); } if (pos == alphabeta.size()) { // reach the end of items return; } for (int i = pos; i < alphabeta.size(); ++ i) { // picking this element, then start picking elements to the right combination(alphabeta, toPick, result, s + alphabeta[i], i + 1); } } |
void combination(string alphabeta, int toPick, vector<string> &result, string s = "", int pos = 0) {
if (s.size() == toPick) { // found a solution
result.push_back(s);
}
if (pos == alphabeta.size()) { // reach the end of items
return;
}
for (int i = pos; i < alphabeta.size(); ++ i) {
// picking this element, then start picking elements to the right
combination(alphabeta, toPick, result, s + alphabeta[i], i + 1);
}
}However, the DFS may not be optimal, the complexity is N elements first iteration, N-1 second iteration etc thus N*(N-1)*(N-2)*…(N-M), roughly to O(N^M).
Python Combination Function
We can implement in Python the following combination function that works for both List and String:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def combinations(data, length): r = [] def dfs(cur, pos): if len(cur) == length: r.append(cur) if pos == len(data): return if type(data) is list: for i in range(pos, len(data)): dfs(cur + [data[i]], i + 1) else: for i in range(pos, len(data)): dfs(cur + data[i], i + 1) if type(data) is list: dfs([], 0) else: dfs("", 0) return r |
def combinations(data, length):
r = []
def dfs(cur, pos):
if len(cur) == length:
r.append(cur)
if pos == len(data):
return
if type(data) is list:
for i in range(pos, len(data)):
dfs(cur + [data[i]], i + 1)
else:
for i in range(pos, len(data)):
dfs(cur + data[i], i + 1)
if type(data) is list:
dfs([], 0)
else:
dfs("", 0)
return rA local recursive DFS function is defined, and we use type() to deal with the list (array) or the string. Example usage:
1 2 3 4 5 6 | print(combinations([1, 2, 3, 4], 2)) >>> [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] print(combinations(['a', 'b', 'c', 'd'], 2)) >>> [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']] print(combinations('abcd', 2)) >>> ['ab', 'ac', 'ad', 'bc', 'bd', 'cd'] |
print(combinations([1, 2, 3, 4], 2))
>>> [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
print(combinations(['a', 'b', 'c', 'd'], 2))
>>> [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']]
print(combinations('abcd', 2))
>>> ['ab', 'ac', 'ad', 'bc', 'bd', 'cd']Python Combination Iterator
If we are not using all the combination results at once, we can modify the above Python algorithm to return a iterator – which avoids sucking up memory at once. Each result is yield-ed.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def combinations(data, length): def dfs(cur, pos): if len(cur) == length: yield cur if pos == len(data): return if type(data) is list: for i in range(pos, len(data)): for j in dfs(cur + [data[i]], i + 1): yield j else: for i in range(pos, len(data)): for j in dfs(cur + data[i], i + 1): yield j if type(data) is list: return dfs([], 0) else: return dfs("", 0) |
def combinations(data, length):
def dfs(cur, pos):
if len(cur) == length:
yield cur
if pos == len(data):
return
if type(data) is list:
for i in range(pos, len(data)):
for j in dfs(cur + [data[i]], i + 1):
yield j
else:
for i in range(pos, len(data)):
for j in dfs(cur + data[i], i + 1):
yield j
if type(data) is list:
return dfs([], 0)
else:
return dfs("", 0)As the combinations function now returns an iterator, we can use it like this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | for i in combinations_iterator([1, 2, 3, 4], 2): print(i) # [1, 2] # [1, 3] # [1, 4] # [2, 3] # [2, 4] # [3, 4] for i in combinations_iterator(['a', 'b', 'c', 'd'], 2): print(i) # ['a', 'b'] # ['a', 'c'] # ['a', 'd'] # ['b', 'c'] # ['b', 'd'] # ['c', 'd'] for i in combinations_iterator('abcd', 2): print(i) # ab # ac # ad # bc # bd # cd |
for i in combinations_iterator([1, 2, 3, 4], 2):
print(i)
# [1, 2]
# [1, 3]
# [1, 4]
# [2, 3]
# [2, 4]
# [3, 4]
for i in combinations_iterator(['a', 'b', 'c', 'd'], 2):
print(i)
# ['a', 'b']
# ['a', 'c']
# ['a', 'd']
# ['b', 'c']
# ['b', 'd']
# ['c', 'd']
for i in combinations_iterator('abcd', 2):
print(i)
# ab
# ac
# ad
# bc
# bd
# cd
python
Another interesting read to implement the combination using bitmasking algorithm: Using Bitmasking Algorithm to Compute the Combinations of an Array
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:一个直角三角形里画一个最大的正方形 非凡的天才——伽罗华 承受磨炼——伽罗华 难以遮掩的光芒——伽罗华 小猪丢丑——小花猪1 回归自然——小花猪2 小黑野猪——小花猪3 人猪大战——小花猪4 网站建设容易忽略的6个地方 如何检查网站是否被竞争对手Negative SEO攻击?
- 评论列表
-
- 添加评论