Recursive Depth First Search Algorithm to Compute the Diameter o
- 时间:2020-09-10 12:55:33
- 分类:网络文摘
- 阅读:119 次
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
Example:
Given a binary tree1 / \ 2 3 / \ 4 5Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
Compute the Diameter of a Binary Tree using Recursive Depth First Search Algorithm
The diameter can be computed as the depth of the left subtree plus the depth of the right subtree. However, as the diameter may not go through the root, it may exist in sub problems i.e. left or right tree.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int diameterOfBinaryTree(TreeNode* root) { if (root == nullptr) return 0; int left = diameterOfBinaryTree(root->left); int right = diameterOfBinaryTree(root->right); return max(left, max(right, dfs(root))); } private: int dfs(TreeNode* root) { if (root == nullptr) return 0; return depth(root->left) + depth(root->right); } int depth(TreeNode* root) { if (root == nullptr) return 0; return max(depth(root->left), depth(root->right)) + 1; } }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int diameterOfBinaryTree(TreeNode* root) {
if (root == nullptr) return 0;
int left = diameterOfBinaryTree(root->left);
int right = diameterOfBinaryTree(root->right);
return max(left, max(right, dfs(root)));
}
private:
int dfs(TreeNode* root) {
if (root == nullptr) return 0;
return depth(root->left) + depth(root->right);
}
int depth(TreeNode* root) {
if (root == nullptr) return 0;
return max(depth(root->left), depth(root->right)) + 1;
}
};The following is a shorter implementation that gets rid of a intermediate DFS function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int diameterOfBinaryTree(TreeNode* root) { if (root == nullptr) return 0; int left = diameterOfBinaryTree(root->left); int right = diameterOfBinaryTree(root->right); return max(left, max(right, depth(root->left) +depth(root->>right))); } int depth(TreeNode* root) { if (root == nullptr) return 0; return 1 + max(depth(root->left), depth(root->right)); } }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int diameterOfBinaryTree(TreeNode* root) {
if (root == nullptr) return 0;
int left = diameterOfBinaryTree(root->left);
int right = diameterOfBinaryTree(root->right);
return max(left, max(right, depth(root->left) +depth(root->>right)));
}
int depth(TreeNode* root) {
if (root == nullptr) return 0;
return 1 + max(depth(root->left), depth(root->right));
}
};The C++ Depth First Search Algorithm is implemented using Recursion. We’ve noticed that the depth function is called many times for a same Tree Node, thus we can use a hash map to store the values for the visited nodes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int diameterOfBinaryTree(TreeNode* root) { if (root == nullptr) return 0; int left = diameterOfBinaryTree(root->left); int right = diameterOfBinaryTree(root->right); return max(left, max(right, depth(root->left) + depth(root->right))); } int depth(TreeNode* root) { if (root == nullptr) return 0; if (data.find(root) != data.end()) return data[root]; int r = 1 + max(depth(root->left), depth(root->right)); data[root] = r; return r; } private: unordered_map<TreeNode*, int> data; }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int diameterOfBinaryTree(TreeNode* root) {
if (root == nullptr) return 0;
int left = diameterOfBinaryTree(root->left);
int right = diameterOfBinaryTree(root->right);
return max(left, max(right, depth(root->left) + depth(root->right)));
}
int depth(TreeNode* root) {
if (root == nullptr) return 0;
if (data.find(root) != data.end()) return data[root];
int r = 1 + max(depth(root->left), depth(root->right));
data[root] = r;
return r;
}
private:
unordered_map<TreeNode*, int> data;
};However, the above Recursive DFS is not optimal as we may visit a node more than once. We can compute the diameter on the fly when we compute the depth of the binary tree.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int diameterOfBinaryTree(TreeNode* root) { ans = 0; depth(root); return ans; } int depth(TreeNode* root) { if (!root) return 0; int L = depth(root->left); int R = depth(root->right); ans = max(ans, L + R); return max(L, R) + 1; } private: int ans; }; |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int diameterOfBinaryTree(TreeNode* root) {
ans = 0;
depth(root);
return ans;
}
int depth(TreeNode* root) {
if (!root) return 0;
int L = depth(root->left);
int R = depth(root->right);
ans = max(ans, L + R);
return max(L, R) + 1;
}
private:
int ans;
};And the time complexity is O(N) where N is the number of the nodes in the binary tree. The space requirement is also O(N) due to implicit usage from Recursive calls.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:How to Travel and Blog Without Missing a Beat 7 Ways To Save Some Money As A Blogger In 2017 5 Easy Steps to Detect What WordPress Theme a Site is Using 7 Questions You Must Answer to Get the Right Kind of Faceb How to Check if a Binary Tree is Balanced (Top-down and Bottom-u How to Check If A String Is a Number (Numeric) using Regex (C++/ The Bash Programming Tutorial: Compute the GCD (Greatest Common How to Re-Number the Files Sequentially on Windows using Batch P How to Split a String in Balanced Strings? Finding Out the Longest Arithmetic Subsequence of Given Differen
- 评论列表
-
- 添加评论