Algorithms to Compute the Bitwise AND of Numbers in a Range

  • 时间:2020-10-11 15:25:20
  • 分类:网络文摘
  • 阅读:118 次

Given a range [m, n] where 0 <= m <= n <= 2147483647 (32 bit), return the bitwise AND of all numbers in this range, inclusive.

Example 1:
Input: [5,7]
Output: 4

Example 2:
Input: [0,1]
Output: 0

Bruteforce Algorithm to Compute the Bitwise AND of numbers within a range

The most intutuive solution is to apply the Bitwise AND for each numbers in a range, and the complexity will be O(N) where N is the total of the integers between M and N.

1
2
3
4
5
6
7
8
9
10
class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        int res = m;
        for (int i = m + 1; i <= n; ++ i) {
            res &= i;
        }
        return res;
    }
};
class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        int res = m;
        for (int i = m + 1; i <= n; ++ i) {
            res &= i;
        }
        return res;
    }
};

For inputs such as (0, 2147483647), the above bruteforce algorithm is inefficient to give a answer as all the numbers are iterated.

Compute the Common Prefix in Binary

Let’s take the numbers from 4 to 7 in binary, and do a bitwise AND.

0100
0101
0110
0111

The common prefix is 01, which converted to binary is 4. Thus, we can find the common prefix of all numbers between m and n using the following O(1) algorithm (both constant in time and space).

While m is smaller than n, we shift both numbers one position to the right (effectively dividing both numbers to two).

m = 0100, n = 0111, shift = 0
m = 0010, n = 0011, shift = 1
m = 0001, n = 0001, shift = 2

Thus, the answer is 1 << 2 = 0100

1
2
3
4
5
6
7
8
9
10
11
12
class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        int shift = 0;
        while (m < n) {
            m >>= 1;
            n >>= 1;
            shift ++;
        }
        return m << shift;
    }
};
class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        int shift = 0;
        while (m < n) {
            m >>= 1;
            n >>= 1;
            shift ++;
        }
        return m << shift;
    }
};

Another solution is to clear the rightmost 1 bit of n (apply the trick), until it is smaller or equal to m.

1
2
3
4
5
6
7
8
9
class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        while (m < n) {
            n = n & (n - 1);
        }
        return m & n;
    }
};
class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        while (m < n) {
            n = n & (n - 1);
        }
        return m & n;
    }
};

This approach is also O(1) in both time and space. This puzzle is one of those classic ones where we could apply those smart bit tweaks (twicks).

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
简算题:(1/8+1/24+1/48+1/80+1/120+1/168+1/224+1/288)×128  奥数题:狗跑5步的时间马跑3步  数学题:甲乙丙三桶油  数学题:将一块圆锥形糕点沿着高切成两半  数学题:这包糖果至少有多少颗  数学题:在1989后面写下一串数字  数学题:三一班图书角中的故事书本数比连环画本数的2倍多8本  数学题:兔妈妈拔回家一筐萝卜  奥数题:两次相遇地点间相距120千米  数学题:甲乙两仓库共有棉花2600包 
评论列表
添加评论