How to Compute the Projection Area of 3D Shapes?

  • 时间:2020-10-06 11:32:45
  • 分类:网络文摘
  • 阅读:95 次

On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j). Now we view the projection of these cubes onto the xy, yz, and zx planes. A projection is like a shadow, that maps our 3 dimensional figure to a 2 dimensional plane. Here, we are viewing the “shadow” when looking at the cubes from the top, the front, and the side. Return the total area of all three projections.

Example 1:
Input: [[2]]
Output: 5

Example 2:
Input: [[1,2],[3,4]]
Output: 17
Explanation:
Here are the three projections (“shadows”) of the shape made with each axis-aligned plane.

cubes-in-3d-axies How to Compute the Projection Area of 3D Shapes? algorithms c / c++ geometry math

cubes-in-3d-axies

Example 3:
Input: [[1,0],[0,2]]
Output: 8

Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 14

Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 21

Note:
1 <= grid.length = grid[0].length <= 50
0 <= grid[i][j] <= 50

Projection Area of 3D Shapes

This problem may seem hard, but it is actually easy to solve. The X-Y view area can be counted by the non-zero cubes, which is the the input array. Then, Y-Z view will be the sum of the maximum of each row and similary X-Z view will be the sum of the maximum for each column.

The maximum for each rows are easy to compute and stored as we iterate the array. The column maxs can be done similarly via another O(N) loop where N is the number of the input cubes. However, it will be slightly faster if we use a hash map e.g. unordered_map in C++, to remember/update the column maxs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int projectionArea(vector<vector<int>>& grid) {
        int ans = 0;
        unordered_map<int, int> columns;
        for (int i = 0; i < grid.size(); ++ i) {
            int rowMax = 0;
            for (int j = 0; j < grid[i].size(); ++ j) {
                if (grid[i][j] != 0) ans ++; // xy                
                rowMax = max(grid[i][j], rowMax);
                if (columns.find(j) == columns.end()) {
                    columns[j] = grid[i][j];
                } else {
                    columns[j] = max(columns[j], grid[i][j]);
                }
            }
            ans += rowMax;  // yz
        }        
        for (auto &it: columns) {
            ans += it.second; // xz
        }
        return ans;
    }
};
class Solution {
public:
    int projectionArea(vector<vector<int>>& grid) {
        int ans = 0;
        unordered_map<int, int> columns;
        for (int i = 0; i < grid.size(); ++ i) {
            int rowMax = 0;
            for (int j = 0; j < grid[i].size(); ++ j) {
                if (grid[i][j] != 0) ans ++; // xy                
                rowMax = max(grid[i][j], rowMax);
                if (columns.find(j) == columns.end()) {
                    columns[j] = grid[i][j];
                } else {
                    columns[j] = max(columns[j], grid[i][j]);
                }
            }
            ans += rowMax;  // yz
        }        
        for (auto &it: columns) {
            ans += it.second; // xz
        }
        return ans;
    }
};

The overall complexity is O(N) time and O(N) space – consider the input can be just a row of cubes.

Similar post: How to Compute the Surface Area of 3D Shapes (Cubes Placed on Grid Cells)?

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
奥数题:狗跑5步的时间马跑3步  数学题:甲乙丙三桶油  数学题:将一块圆锥形糕点沿着高切成两半  数学题:这包糖果至少有多少颗  数学题:在1989后面写下一串数字  数学题:三一班图书角中的故事书本数比连环画本数的2倍多8本  数学题:兔妈妈拔回家一筐萝卜  奥数题:两次相遇地点间相距120千米  数学题:甲乙两仓库共有棉花2600包  百度快照投诉功能恢复正常,新增快照失效类型选项 
评论列表
添加评论