The Image Smoother Algorithm in C++/Java

  • 时间:2020-10-05 13:15:44
  • 分类:网络文摘
  • 阅读:103 次

Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.

Example 1:
Input:
[[1,1,1],
[1,0,1],
[1,1,1]]

Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]

Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0

Note:
The value in the given matrix is in the range of [0, 255].
The length and width of the given matrix are in the range of [1, 150].

How to Smooth Image in C++?

The following C++ code implements O(N) algorithm (where N is the number of pixels in the image) that iterates each pixel. We can’t modify the existing image, rather, it has to be done on a separate copy of image.

We can deep copy the std::vector, or just assign new pixel to it.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
    vector<vector<int>> imageSmoother(vector<vector<int>>& M) {
        int row = M.size();
        if (row == 0) return M;
        int width = M[0].size();
        if (width == 0) return M;
        vector<vector<int>> N(row, vector<int>(width)); // or N = M deep copy of vector
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = max(0, i - 1); k <= min(i + 1, row - 1); k ++) {
                    for (int u = max(0, j - 1); u <= min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;
    }
};
class Solution {
public:
    vector<vector<int>> imageSmoother(vector<vector<int>>& M) {
        int row = M.size();
        if (row == 0) return M;
        int width = M[0].size();
        if (width == 0) return M;
        vector<vector<int>> N(row, vector<int>(width)); // or N = M deep copy of vector
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = max(0, i - 1); k <= min(i + 1, row - 1); k ++) {
                    for (int u = max(0, j - 1); u <= min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;
    }
};

We can check if the neighbour index of pixels are valid. Alternatively, we can use min/max to make sure the indices are always valid. We don’t need to use floor function as the integer division is floor anyway.

How to Smooth Image in Java?

The same image smooth algorithm can be implemented in Java as follows.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public int[][] imageSmoother(int[][] M) {
        int row = M.length;
        if (row == 0) return M;
        int width = M[0].length;
        if (width == 0) return M;
        int[][] N = new int[row][width];
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = Math.max(0, i - 1); k <= Math.min(i + 1, row - 1); k ++) {
                    for (int u = Math.max(0, j - 1); u <= Math.min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;        
    }
}
class Solution {
    public int[][] imageSmoother(int[][] M) {
        int row = M.length;
        if (row == 0) return M;
        int width = M[0].length;
        if (width == 0) return M;
        int[][] N = new int[row][width];
        for (int i = 0; i < row; ++ i) {
            for (int j = 0; j < width; ++ j) {
                int sum = 0, c = 0;
                for (int k = Math.max(0, i - 1); k <= Math.min(i + 1, row - 1); k ++) {
                    for (int u = Math.max(0, j - 1); u <= Math.min(j + 1, width - 1); u ++) {
                        sum += M[k][u];
                        c ++;
                    }
                }
                N[i][j] = sum / c;
            }
        }
        return N;        
    }
}

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
热闹的除夕作文  心如止水,乱则不明  校园的竹林作文  视频内容如何提高搜索引擎优化排名  Google SEO优化,4个“另类”的排名方法  商城系统建设心得,轻松搞定选择困难  什么是PPC?为什么你会用到它?  SEO网站优化能为你带来那些好处?  高级SEO思维详细解读  PageAdmin CMS站群系统教程:网站站群的添加和管理 
评论列表
添加评论