The O(N) Increasing Triplet Subsequence Algorithm
- 时间:2020-09-24 11:41:27
- 分类:网络文摘
- 阅读:116 次
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.Example 1:
Input: [1,2,3,4,5]
Output: true
Example 2:Input: [5,4,3,2,1]
Output: false
Checking Increasing Triplet Subsequence in O(N) Algorithm
The most intutive solution will be to bruteforce a triplet in O(N^3) and see if it is in increasing order. Obviously, this is inefficient. A Better solution is to record the smaller numbers as iterating the array.
This greedy approach works, as we are iterating the array from left to the right. If we find out a number that is different than the two numbers we have found – and both numbers are smaller than the current number, we know it has a increasing triplet subsequence.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | class Solution { public: bool increasingTriplet(vector<int>& nums) { int first = INT_MAX, second = INT_MAX; for (const auto &n: nums) { if (n <= first) { first = n; } else if (n <= second) { second = n; } else return true; } return false; // can't find such triplet increasing subsequence } }; |
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int first = INT_MAX, second = INT_MAX;
for (const auto &n: nums) {
if (n <= first) {
first = n;
} else if (n <= second) {
second = n;
} else return true;
}
return false; // can't find such triplet increasing subsequence
}
};I have to say, this trick is elegant and makes the algorithm efficient in O(N) time and O(1) constant space.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:饮食与健康:维生素B2的补充无需刻意 女性急躁易发怒可能与维生素缺乏有关系 冬天吃水果,究竟应该注意什么问题? 萝卜的保健功能和萝卜的食疗吃法 红枣美味营养可养生但是禁忌亦不少 不同包装的牛奶,你知道该如何选择吗 冬天吃羊肉如何去掉羊膻味及饮食禁忌 适度喝啤酒预防骨质疏松保持关节弹性 关于鸡蛋营养及其食用方法的十大误区 腊肉的风味和特点及腊肉的制作全过程
- 评论列表
-
- 添加评论