4Sum – Find Unique Quadruplets that Sum to Target using O(
- 时间:2020-09-21 09:15:21
- 分类:网络文摘
- 阅读:110 次
Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
The solution set must not contain duplicate quadruplets.
Example:
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
1 2 3 4 5 [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ][ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
Previously, we have talked about Two Sum and Three Sum. The Four Sum problem is similar.
Four Sum Algorithm using Four Pointers
First, we have to sort the array, so that we can easily skip the duplicates for the same pointer and apply the four pointer algorithm. We first iterate with O(N^2) for i and j pairs (where j is always larger than i). Then we can apply two pointer in the part that is beyond pointer j – moving towards each other until they meet in the middle.
When we find a unique quadruplet, we have to skip the duplicates by moving the last two pointer:
1 2 | while (nums[k] == nums[k - 1] && (k < u)) k ++; while (nums[u] == nums[u + 1] && (k < u)) u --; |
while (nums[k] == nums[k - 1] && (k < u)) k ++; while (nums[u] == nums[u + 1] && (k < u)) u --;
The overall algorithm complexity is O(N^3).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | class Solution { public: vector<vector<int>> fourSum(vector<int>& nums, int target) { vector<vector<int>> r; if (nums.empty()) return r; sort(begin(nums), end(nums)); int n = nums.size(); for (int i = 0; i < n; ++ i) { if ((i > 0) && (nums[i] == nums[i - 1])) continue; // skip duplicates for (int j = i + 1; j < n; ++ j) { if ((j > i + 1) && (nums[j] == nums[j - 1])) continue; // skip duplicates int k = j + 1; int u = n - 1; while (k < u) { // two pointer algorithm int s = nums[i] + nums[j] + nums[k] + nums[u]; if (s == target) { r.push_back({nums[i], nums[j], nums[k], nums[u]}); k ++; u --; while (nums[k] == nums[k - 1] && (k < u)) k ++; // skip duplicates while (nums[u] == nums[u + 1] && (k < u)) u --; // skip duplicates } else if (s > target) { u --; } else { k ++; } } } } return r; } }; |
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> r;
if (nums.empty()) return r;
sort(begin(nums), end(nums));
int n = nums.size();
for (int i = 0; i < n; ++ i) {
if ((i > 0) && (nums[i] == nums[i - 1])) continue; // skip duplicates
for (int j = i + 1; j < n; ++ j) {
if ((j > i + 1) && (nums[j] == nums[j - 1])) continue; // skip duplicates
int k = j + 1;
int u = n - 1;
while (k < u) { // two pointer algorithm
int s = nums[i] + nums[j] + nums[k] + nums[u];
if (s == target) {
r.push_back({nums[i], nums[j], nums[k], nums[u]});
k ++;
u --;
while (nums[k] == nums[k - 1] && (k < u)) k ++; // skip duplicates
while (nums[u] == nums[u + 1] && (k < u)) u --; // skip duplicates
} else if (s > target) {
u --;
} else {
k ++;
}
}
}
}
return r;
}
};The above C++ implements the solution to find the unique quadruplets that sum up to a target (4sum or four sum problem).
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:钟声的问题 越减越多的问题 数图形的问题 一笔画问题 我们家的清明习俗 悲惨童年|小学作文 北京春节的习俗 快乐艺术节 我爱秋天的凄凉 赛龙舟比赛
- 评论列表
-
- 添加评论