Bruteforce or Line Sweep Algorithms to Remove Covered Intervals

  • 时间:2020-09-13 14:33:25
  • 分类:网络文摘
  • 阅读:148 次

Given a list of intervals, remove all intervals that are covered by another interval in the list. Interval [a,b) is covered by interval [c,d) if and only if c <= a and b <= d. After doing so, return the number of remaining intervals.

Example 1:
Input: intervals = [[1,4],[3,6],[2,8]]
Output: 2
Explanation: Interval [3,6] is covered by [2,8], therefore it is removed.

Constraints:
1 <= intervals.length <= 1000
0 <= intervals[i][0] < intervals[i][1] <= 10^5
intervals[i] != intervals[j] for all i != j

Hints:
How to check if an interval is covered by another?
Compare each interval to all others and check if it is covered by any interval.

Bruteforce Algorithm to Remove Covered Interval

Let’s use brute-force algorithm, which is the most intuitive solution. Brute force all possible pairs of intervals in O(N^2) time, then we use a vector to mark the validity of the intervals. A interval is set to be covered if its both ends are completely inside another one. Then, the result would be just to count the number of valid intervals in the boolean array – which we can use the std::accumulate if we want to avoid the for-loops (or while).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        int n = intervals.size();
        vector<bool> good(n, true);
        for (int i = 0; i < n; ++ i) {
            for (int j = i + 1; j < n; ++ j) {
                auto a = intervals[i];
                auto b = intervals[j];
                if (a[0] >= b[0] && a[1] <= b[1]) {
                    good[i] = false;
                } else if (b[0] >= a[0] && b[1] <= a[1]) {
                    good[j] = false;
                }
            }
        }
        return std::accumulate(begin(good), end(good), 0, [](int a, bool b) {
            return a + (b == true);
        });
    }
};
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        int n = intervals.size();
        vector<bool> good(n, true);
        for (int i = 0; i < n; ++ i) {
            for (int j = i + 1; j < n; ++ j) {
                auto a = intervals[i];
                auto b = intervals[j];
                if (a[0] >= b[0] && a[1] <= b[1]) {
                    good[i] = false;
                } else if (b[0] >= a[0] && b[1] <= a[1]) {
                    good[j] = false;
                }
            }
        }
        return std::accumulate(begin(good), end(good), 0, [](int a, bool b) {
            return a + (b == true);
        });
    }
};

The brute force‘s time complexity is O(N^2) and the space requirement is O(N). As the problem statement says, the input array of intervals contains at most 1000, O(N^2) would be too slow.

Line Sweep Algorithm to Remove Covered Interval

Let’s sort the intervals first by the lower point, which if it is equal, then we put the one first with a bigger upper point. For example, [1, 2], [1, 5] and [2, 3] are sorted.

Then, we check if the current interval’s upper-bound is larger than the previous endpoint – which we need to increment the answer as the current interval is not covered. Also, when need to update the previous interval upper-bound accordingly. For example, [2, 3] is covered as 3 is smaller than previous end which is 5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        if (intervals.empty()) return 0;
        sort(begin(intervals), end(intervals), [](auto &a, auto &b) {
            return a[0] == b[0] ? a[1] > b[1] : a[0] < b[0];
        });
        int count = 1;        
        int end = intervals[0][1];
        for (int i = 1; i < intervals.size(); ++ i) {
            if (intervals[i][1] > end) {
                count ++;
                end = intervals[i][1];
            }
        }
        return count;
    }
};
class Solution {
public:
    int removeCoveredIntervals(vector<vector<int>>& intervals) {
        if (intervals.empty()) return 0;
        sort(begin(intervals), end(intervals), [](auto &a, auto &b) {
            return a[0] == b[0] ? a[1] > b[1] : a[0] < b[0];
        });
        int count = 1;        
        int end = intervals[0][1];
        for (int i = 1; i < intervals.size(); ++ i) {
            if (intervals[i][1] > end) {
                count ++;
                end = intervals[i][1];
            }
        }
        return count;
    }
};

The time complexity is O(N.LogN) as the sorting dominates. And the space requirement is O(1) constant – as we are assuming the sorting does not require additional space e.g. iterative Quick Sorting Algorithm.

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
wordpress技巧:为标签链接添加rel=”nofollow”属性  wordpress 4.0 新增自定义图标插件安装  WordPress在线文件管理插件:FileBrowser  设置wordpress文章标题高亮的代码  免插件实现WordPress文章置顶的方法  让新浪微博变身外链图床的wordpress插件:微博图床  三款自动翻译文章标题为英文的wordpress插件介绍与比较  WodrPress实现远程图片本地化插件-Auto_Save_Image  碧沙岗公园作文  世界的奇迹作文700字 
评论列表
添加评论