How to Convert Integer to the Sum of Two No-Zero Integers?
- 时间:2020-09-12 10:06:27
- 分类:网络文摘
- 阅读:133 次
Given an integer n. No-Zero integer is a positive integer which doesn’t contain any 0 in its decimal representation.
Return a list of two integers [A, B] where:
A and B are No-Zero integers.
A + B = n
It’s guarateed that there is at least one valid solution. If there are many valid solutions you can return any of them.Example 1:
Input: n = 2
Output: [1,1]
Explanation: A = 1, B = 1. A + B = n and both A and B don’t contain any 0 in their decimal representation.
Example 2:Input: n = 11
Output: [2,9]
Example 3:Input: n = 10000
Output: [1,9999]
Example 4:Input: n = 69
Output: [1,68]
Example 5:Input: n = 1010
Output: [11,999]Constraints:
2 <= n <= 10^4Hints:
Loop through all elements from 1 to n.
Choose A = i and B = n – i then check if A and B are both No-Zero integers.
Bruteforce Algorithm to Convert an Integer to Two NonZero Sum
The bruteforce algorithm is intuitive solution that we can use to check the first integer range from 1 to n – 1, then we need to check both numbers if they contain zeros.
To check if a integer has zeros in it, one approach would be to convert it to string. For example, in C++, we can use std::to_string() to convert a integer to std::string. Alternatively, we can check the rightmost (least significant) digit and divide by ten repeatedly.
Below are the bruteforce implementations of C++, Python and Java respectively.
Java
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class Solution { public int[] getNoZeroIntegers(int n) { for (int i = 1; i < n; ++ i) { int a = i; int b = n - a; if (nozeros(a) && nozeros(b)) { return new int[]{a, b}; } } return null; } private boolean nozeros(int x) { while (x > 0) { if (x % 10 == 0) return false; x /= 10; } return true; } } |
class Solution {
public int[] getNoZeroIntegers(int n) {
for (int i = 1; i < n; ++ i) {
int a = i;
int b = n - a;
if (nozeros(a) && nozeros(b)) {
return new int[]{a, b};
}
}
return null;
}
private boolean nozeros(int x) {
while (x > 0) {
if (x % 10 == 0) return false;
x /= 10;
}
return true;
}
}C++
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | class Solution { public: vector<int> getNoZeroIntegers(int n) { for (int i = 1; i < n; ++ i) { if (nonzeros(i) && nonzeros(n - i)) { return {i, n - i}; } } return {}; } private: bool nonzeros(int n) { while (n > 0) { if (n % 10 == 0) return false; n /= 10; } return true; } }; |
class Solution {
public:
vector<int> getNoZeroIntegers(int n) {
for (int i = 1; i < n; ++ i) {
if (nonzeros(i) && nonzeros(n - i)) {
return {i, n - i};
}
}
return {};
}
private:
bool nonzeros(int n) {
while (n > 0) {
if (n % 10 == 0) return false;
n /= 10;
}
return true;
}
};Python
1 2 3 4 5 6 | class Solution: def getNoZeroIntegers(self, n: int) -> List[int]: a = 1 while '0' in f'{a}{n-a}': a += 1 return [a, n - a] |
class Solution:
def getNoZeroIntegers(self, n: int) -> List[int]:
a = 1
while '0' in f'{a}{n-a}':
a += 1
return [a, n - a]The following is interesting as we are using the generator to yield the first (next) valid solution.
1 2 3 | class Solution: def getNoZeroIntegers(self, n: int) -> List[int]: return next([a, n - a] for a in range(1, n) if not '0' in f'{a}{n - a}') |
class Solution:
def getNoZeroIntegers(self, n: int) -> List[int]:
return next([a, n - a] for a in range(1, n) if not '0' in f'{a}{n - a}')All the above implementations run at O(N) time and O(1) constant space.
We can also use two pointers starting at both ends towards each other, and the complexity will be the same.
–EOF (The Ultimate Computing & Technology Blog) —
推荐阅读:百度快照投诉功能恢复正常,新增快照失效类型选项 新网站排名不稳固,三大SEO优化技巧你做到了吗? SEO优化网站诊断的几个技巧,你知道多少? bootstrap响应式导航激活高亮,dedecms导航代码分享 为什么自媒体比SEO更火?答案都在这里 发外链还管用么?2020年还能用的外链策略 新网站关键词排名不稳定的原因分析 网站快速收录的方式有哪些 百度只收录主域但不收录带www的域名的解决方法 谷歌网站排名,内容与页面体验,谁更重要?
- 评论列表
-
- 添加评论