Introducing the Pancake Sorting Algorithm

  • 时间:2020-09-07 12:03:44
  • 分类:网络文摘
  • 阅读:134 次

Given an array of integers A, We need to sort the array performing a series of pancake flips. In one pancake flip we do the following steps:

Choose an integer k where 0 <= k < A.length.
Reverse the sub-array A[0…k].
For example, if A = [3,2,1,4] and we performed a pancake flip choosing k = 2, we reverse the sub-array [3,2,1], so A = [1,2,3,4] after the pancake flip at k = 2.

Return an array of the k-values of the pancake flips that should be performed in order to sort A. Any valid answer that sorts the array within 10 * A.length flips will be judged as correct.

Example 1:
Input: A = [3,2,4,1]
Output: [4,2,4,3]
Explanation:
We perform 4 pancake flips, with k values 4, 2, 4, and 3.
Starting state: A = [3, 2, 4, 1]
After 1st flip (k = 4): A = [1, 4, 2, 3]
After 2nd flip (k = 2): A = [4, 1, 2, 3]
After 3rd flip (k = 4): A = [3, 2, 1, 4]
After 4th flip (k = 3): A = [1, 2, 3, 4], which is sorted.
Notice that we return an array of the chosen k values of the pancake flips.

Example 2:
Input: A = [1,2,3]
Output: []
Explanation: The input is already sorted, so there is no need to flip anything.
Note that other answers, such as [3, 3], would also be accepted.

Constraints:
1 ≪= A.length <= 100
1 <= A[i] <= A.length
All integers in A are unique (i.e. A is a permutation of the integers from 1 to A.length).

Pancake Sorting Algorithm

Pancake sorting algorithm may have different implementation. One simple method is to find the maximum element, then reverse the prefix subarray to make it to the begining. Then, we can reverse the whole (unsorted) part to make it to the end – which puts this number inplace. Then we have one less number to sort.

The following is the Python implementation of the pancake sorting algorithm. The time complexity is O(N^2)

1
2
3
4
5
6
7
8
9
10
11
12
class Solution:
    def pancakeSort(self, A: List[int]) -> List[int]:
        k = len(A)
        ans = []
        while k > 0:
            i = A[:k].index(max(A[:k]))
            ans.append(i + 1)
            A = A[:i+1][::-1] + A[i+1:]
            ans.append(k)
            A = A[:k][::-1] + A[k:]
            k -= 1
        return ans
class Solution:
    def pancakeSort(self, A: List[int]) -> List[int]:
        k = len(A)
        ans = []
        while k > 0:
            i = A[:k].index(max(A[:k]))
            ans.append(i + 1)
            A = A[:i+1][::-1] + A[i+1:]
            ans.append(k)
            A = A[:k][::-1] + A[k:]
            k -= 1
        return ans

The C++ Pancake sorting algorithm implementation is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
    vector<int> pancakeSort(vector<int>& A) {
        vector<int> res;
        int k = A.size();
        while (k > 0) {
            auto it = std::max_element(begin(A), begin(A) + k);
            int maxIndex = it - begin(A) + 1;
            // make max to the begining
            res.push_back(maxIndex);
            std::reverse(begin(A), it + 1);
            // make max to the end
            res.push_back(k);
            std::reverse(begin(A), begin(A) + k);
            k --;
        }
        return res;
    }
};
class Solution {
public:
    vector<int> pancakeSort(vector<int>& A) {
        vector<int> res;
        int k = A.size();
        while (k > 0) {
            auto it = std::max_element(begin(A), begin(A) + k);
            int maxIndex = it - begin(A) + 1;
            // make max to the begining
            res.push_back(maxIndex);
            std::reverse(begin(A), it + 1);
            // make max to the end
            res.push_back(k);
            std::reverse(begin(A), begin(A) + k);
            k --;
        }
        return res;
    }
};

The space complexity is O(N).

–EOF (The Ultimate Computing & Technology Blog) —

推荐阅读:
甲车的速度是乙车的多少倍  一道分数简便计算题目  一道求周长的问题  难题不难的例子  游泳追水壶问题  巧解鸡兔同笼  山字形周长的问题  蜗牛爬井问题  ABCDE五对夫妇聚会答案  多位数读写常见错误及形成原因 
评论列表
添加评论